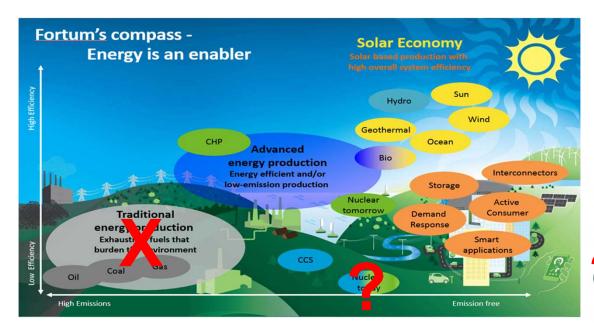
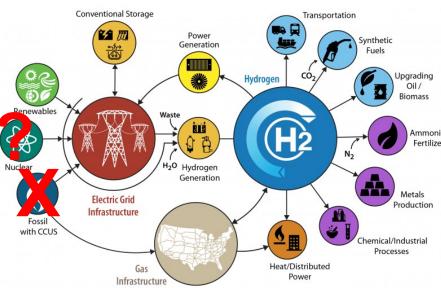


RENEWABLE POWER-TO-X ECONOMY

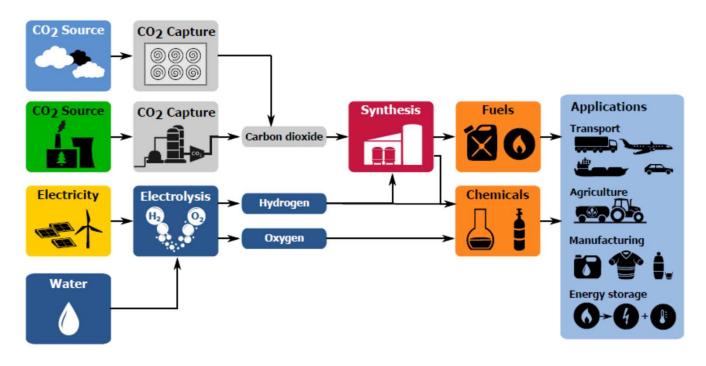


Drivers for the energy transition

- Climate change mitigation
- Phasing out fossil fuels
- Geopolitics / National energy security
- International agreements and commitments
- Maintaining reasonably energy prices
- Industrial competitiveness
- Promotion of innovation
- Sustainability



What is Renewable Power-to-X Economy?


Solar economy

Hydrogen economy

What is Power-to-X Economy?

H₂ and CO₂ are used for the production of synthetic fuels (electrofuels, e-fuels) and chemicals using renewable electricity

Power-to-X:

- Direct electrification
- Electricity storage
- Power-to-mobility
- Power-to-heat
- Power-to-gas (H₂,CH₄)
- Power-to-liquid (MeOH, FT, NH₃)
- Power-to-materials (steel, aluminium, carbon fibres, etc.)
- Power-to-fresh water
- Power-to-CO₂
- Power-to-food
- Power-to-forests

Our Research Focus

- Market and business models
- Renewable energy resources, production and conversion technologies
- Energy efficiency
- Energy storage
- Demand response
- Regulatory functions
- Mitigation of climate change
- Techno-economic modelling of integrated energy systems
- Consideration of the social, political, economic, and environmental landscape to which we all belong

Courses for Renewable Power-to-X Economy

BL20A1300 Energy Resources BL20A1400 Renewable Energy Technology BL40A2401 Electrical Engineering in Wind and Solar Systems BL40A3021 Technologies for Electrochemical Energy Conversion and Storage of Electricity BL20A1500 Energy Scenarios BH61A0700 Energy markets BL10A2001 Master's Thesis DI 1 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-	Obligatory spe-	cialization studies (64 cr)	Year	per.	cr
BL40A2401 Electrical Engineering in Wind and Solar Systems BL40A3021 Technologies for Electrochemical Energy Conversion and Storage of Electricity BL20A1500 Energy Scenarios BH61A0700 Energy markets DI 1 3-4 DI 2 1-2 DI 1 1	BL20A1300	Energy Resources	DI 1	1-2	6
BL40A3021 Technologies for Electrochemical Energy Conversion and Storage of Electricity BL20A1500 Energy Scenarios BH61A0700 Energy markets DI 1 3-4 DI 2 DI 2 1-2 DI 1 1	BL20A1400	Renewable Energy Technology	DI 1	3-4	6
BL40A3021 Technologies for Electrochemical Energy Conversion and Storage of Electricity BL20A1500 Energy Scenarios BH61A0700 Energy markets DI 1 3-4 DI 2 DI 2 DI 1 1	BL40A2401	Electrical Engineering in Wind and Solar Systems	DI 1	3-4	6
BL20A1500 Energy Scenarios DI 2 1-2 BH61A0700 Energy markets DI 1 1	BL40A3021	Technologies for Electrochemical Energy	DI 1	3-4	5
BH61A0700 Energy markets DI 1 1		Conversion and Storage of Electricity	229-200 - 224		
•	BL20A1500	Energy Scenarios	DI 2	1-2	6
BL10A2001 Master's Thesis DI 2 3-4	BH61A0700	Energy markets	DI 1	1	5
	BL10A2001	Master's Thesis	DI 2	3-4	30
	27			¥2 = 1	

Elective specialization studies, min 5 op		Year	per.	cr
BL20A0601	Electrical Power Transmission		2	5
BL30A1301	Advanced Power Electronics	DI 1	3-4	6
BL30A1321	Modelling and Control of Power electronic	DI 1	3-4	5
	Converters			
BL301040	Electrical Drives 1	DI 2	1	4
BL40A1101	Embedded System Programming		1-2	5
BL40A0510	Digital Control 1	DI 1	1-2	4

What Can You Do After Graduation

- Research and education
- Government and NGOs
- Transmission, distribution and retail companies
- Energy market authorities and regulators
- Companies and industry need energy experts that understand 'the big picture', including future trends
- Technological research, development, sales and support
- Renewable energy development companies
- Energy storage and hydrogen offer several possibilities
- Aggregation for demand response and V2G
- Start-up and grassroots organizations

H2 projects in Finland

Further Information

- Pertti Kauranen, Energy Storage Professor
- Pertti.Kauranen@lut.fi

- Christian Breyer, Professor of Solar Economy
- Christian.Breyer@lut.fi

- Antti Kosonen, Professor of System Technology and Applications in Renewable Electricity Generation
- Antti.Kosonen@lut.fi